Feature Evaluation for Handwritten Character Recognition with Regressive and Generative Hidden Markov Models
نویسندگان
چکیده
Hidden Markov Models constitute an established approach often employed for offline handwritten character recognition in digitized documents. The current work aims at evaluating a number of procedures frequently used to define features in the character recognition literature, within a common Hidden Markov Model framework. By separating model and feature structure, this should give a more clear indication of the relative advantage of different families of visual features used for character classification. The effects of model topologies and data normalization are also studied over two different handwritten datasets. The Hidden Markov Model framework is then used to generate images of handwritten characters, to give an accessible visual illustration of the power of different features.
منابع مشابه
Holistic Farsi handwritten word recognition using gradient features
In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملGeneralized hidden Markov models. II. Application to handwritten word recognition
This is the second paper in a series of two papers describing a novel approach for generalizing classical hidden Markov models using fuzzy measures and fuzzy integrals and their application to the problem of handwritten word recognition. This paper presents an application of the generalized hidden Markov models to handwritten word recognition. The system represents a word image as an ordered li...
متن کاملA Model Approach to Off-line English Character Recognition
Recognition rate of handwritten character is still limited due to presence of large variation of shape, scale and format in hand written characters. A sophisticated hand written character recognition system demands a better feature extraction technique that would take care of such variation of hand writing. In this paper, we propose a recognition model based on Hidden Markov Models (HMMs) suppo...
متن کاملOff-line Arabic Handwritten Isolated Character Recognition using Hidden Markov Models
This paper presents a recognition system for Arabic handwritten isolated characters. The recognition system is based on hidden Markov model (HMM). The entire system is capable of recognizing the Arabic handwritten characters. First, the system removes all the variation in the character images. Second, Features are extracted using the sliding window technique with HMM. Then, the HMM is used for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016